EE105 - Fall 2014 Microelectronic Devices and Circuits

Amplifier Transfer Functions

$$
A_{v}(s)=\frac{V_{o}(s)}{V_{s}(s)} \quad s=\sigma+j \omega
$$

$A_{V}(s)=$ Frequency-dependent voltage gain
$V_{0}(s)$ and $V_{s}(s)=$ Laplace Transforms of input and output voltages of amplifier,

$$
A_{v}(s)=K \frac{\left(s+z_{1}\right)\left(s+z_{2}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) . .\left(s+p_{3}\right)} \quad \text { (In factorized form) }
$$

$\left(-\mathbf{z}_{1},-\mathbf{z}_{2}, \ldots-\mathbf{z}_{m}\right)=$ zeros (frequencies for which transfer function is zero) $\left(-p_{1},-p_{2}, \ldots-p_{m}\right)=$ poles (frequencies for which transfer function is infinite)
$A_{v}(j \omega)=\mid A_{v}(j \omega)<A_{v}(j \omega) \quad$ (In polar form)
Bode plots display magnitude of the transfer function in dB and the phase in degrees (or radians) on a logarithmic frequency scale.

2
BSAC

Complex Transfer Functions

Amplifier has 2 frequency ranges with $\left|A_{v}\right|(\mathrm{dB}) \quad A_{\text {mid }} \quad$ constant gain. The mid-band region is always defined as region of highest gain and cutoff frequencies are defined in terms of midband gain.
$\omega(\log$ scale $)$

$$
\left|A_{v}\left(j \omega_{L}\right)\right|=\left|A_{v}\left(j \omega_{H}\right)\right|=\frac{A_{\mathrm{mid}}}{\sqrt{2}}
$$

$$
A_{v}(s)=\frac{K s\left(s+\omega_{2}\right)}{\left(s+\omega_{1}\right)\left(s+\omega_{3}\right)\left(s+\omega_{4}\right)\left(s+\omega_{5}\right)}
$$

For widely spaced poles as in the figure,
$\omega_{H} \cong \omega_{4}$ and $\omega_{L} \cong \omega_{3}$,

$$
A_{v}(s)=\frac{A_{\operatorname{mid}} s\left(s+\omega_{2}\right)}{\left(s+\omega_{1}\right)\left(s+\omega_{3}\right)\left(\frac{s}{\omega_{4}}+1\right)\left(\frac{s}{\omega_{5}}+1\right)}
$$

$$
\mathrm{BW}=f_{4}-f_{3}=\frac{\omega_{4}-\omega_{3}}{2 \pi}
$$

Low-Pass Amplifiers

- Amplifies signals below a cut-off frequency, including dc.
- Most operational amplifiers are designed as low pass amplifiers.
- Simplest (single-pole) low-pass amplifier is described by

$$
A_{v}(s)=A_{o} \frac{\omega_{H}}{s+\omega_{H}}=\frac{A_{o}}{1+\frac{s}{\omega_{H}}}
$$

- \mathbf{A}_{o} = low-frequency gain or mid-band gain
- $\omega_{H}=$ upper cutoff frequency or upper half-power point of amplifier.

4
BSAC

Low-pass Amplifier Magnitude Response

$$
\left|A_{v}(j \omega)\right|=\left|\frac{A_{o} \omega_{H}}{j \omega+\omega_{H}}\right|=\frac{\left|A_{o} \omega_{H}\right|}{\sqrt{\omega^{2}+\omega_{H}^{2}}}=\frac{\left|A_{o}\right|}{\sqrt{\frac{\omega^{2}}{\omega_{H}^{2}}+1}}
$$

For $\omega \ll \omega_{H},\left|A_{v}(j \omega)\right|_{d B}=A_{o}$
For $\omega \gg \omega_{\mathrm{H}},\left|A_{v}(j \omega)\right|=\frac{A_{o} \omega_{H}}{\omega}$
For $\omega=\omega_{H},\left|A_{v}(j \omega)\right|=\frac{A_{o}}{\sqrt{2}}$
$\Rightarrow \omega_{H}: \quad 3-\mathrm{dB}$ Bandwidth in Rad/s
$\Rightarrow f_{H}=\frac{\omega_{H}}{2 \pi}: 3-\mathrm{dB}$ Bandwidth in Hz

- Gain is unity (0 dB) at $\boldsymbol{\omega}=\boldsymbol{A}_{0} \omega_{H}=\omega_{\mathrm{T}}$ called gain-bandwidth product
- Bandwidth (frequency range with constant amplification) $=\omega_{H}(\mathrm{rad} / \mathrm{s})$

Arc Tangent Phase Response

RC Low-pass Filter

Impedance of capacitor $=\frac{1}{s C}$

$\omega_{H}=\frac{1}{\left(R_{1} \| R_{2}\right) C}$
$\frac{V_{o}}{V_{s}}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right)\left(\frac{1}{1+\frac{s}{\omega_{H}}}\right)$
Cal

High-pass Amplifiers

- Combines a single pole with a zero at the origin.
- Simplest high-pass amplifier is described by

$$
A_{v}(s)=\frac{A_{o} s}{s+\omega_{L}}
$$

- $\omega_{\mathrm{L}}=$ lower cutoff frequency or lower half-power point of amplifier.

High-pass Amplifier Magnitude and Phase Response

- Bandwidth (frequency range with constant amplification) is infinite
- Phase response is given by

Cal $\angle A_{v}(j \omega)=\angle \frac{A_{o} j \omega}{j \omega+j \omega_{L}}=\angle A_{o}+90^{0}-\tan ^{-1}\left(\frac{\omega}{\omega_{L}}\right)$

Band-pass Amplifiers

- A band-pass characteristic is obtained by combining high-pass and low-pass characteristics.
- Transfer function of a band-pass amplifier is given by

$$
A_{v}(s)=\frac{A_{o} s \omega_{H}}{\left(s+\omega_{L}\right)\left(s+\omega_{H}\right)}=A_{o} \frac{s}{\left(s+\omega_{L}\right)} \frac{1}{\left(\frac{s}{\omega_{H}}+1\right)}
$$

- An ac-coupled amplifier has a band-pass characteristic:
- Capacitors added to circuit cause low frequency roll-off
- Inherent frequency limitations of solid-state devices cause high-frequency roll-off.

Band-pass Amplifier Magnitude and Phase Response

- The mid-band range of frequencies is given by

$$
\omega_{L} \leq \omega \leq \omega_{H} \quad\left|A_{v}(j \omega)\right| \cong A_{o}
$$

- Transfer characteristic is

$$
\left|A_{v}(j \omega)\right|=\left|\frac{A_{o}(j \omega) \omega_{H}}{\left(j \omega+\omega_{L}\right)\left(j \omega+\omega_{H}\right)}\right|=\frac{A_{o} \omega \omega_{H}}{\sqrt{\left(\omega^{2}+\omega_{L}^{2}\right)\left(\omega^{2}+\omega_{H}^{2}\right)}}
$$

Band-pass Amplifier Magnitude and Phase Response (cont.)

At both ω_{H} and ω_{L}, assuming $\omega_{L} \ll \omega_{H}$

$$
\left|A_{v}\left(j \omega_{L}\right)\right|=\left|A_{v}\left(j \omega_{H}\right)\right|=\frac{A_{o}}{\sqrt{2}}
$$

Bandwidth $=\omega_{H}-\omega_{L}$

The phase response is given by

$$
\angle A_{v}(j \omega)=\angle \frac{A_{o} j \omega}{j \omega+j \omega_{L}}=\angle A_{o}+90^{0}-\tan ^{-1}\left(\frac{\omega}{\omega_{L}}\right)-\tan ^{-1}\left(\frac{\omega}{\omega_{H}}\right)
$$

Narrow-band or High-Q Band-pass Amplifiers

- Gain maximum at center frequency ω_{o} and decreases rapidly by 3 dB at ω_{H} and ω_{L}.
- Bandwidth defined as $\omega_{H}-\omega_{L}$, is a small fraction of w_{o} with width determined by:

$$
Q=\frac{\omega_{o}}{\omega_{H}-\omega_{L}}=\frac{f_{o}}{f_{H}-f_{L}}=\frac{f_{o}}{B W}
$$

- For high Q, poles will be complex and

$$
A_{v}(s)=A_{o} \frac{s \frac{\omega_{o}}{Q}}{s^{2}+s \frac{\omega_{o}}{Q}+\omega_{o}^{2}}
$$

- Phase response is given by:

Band-Rejection Amplifier or Notch Filter

- Gain maximum at frequencies far from ω_{o} and exhibits a sharp null at ω_{o}.
- To achieve sharp null, the transfer function has a pair of zeros on the $\boldsymbol{j} \omega$ axis at notch frequency ω_{0}, and the poles are complex.

$$
A_{v}(s)=A_{o} \frac{s^{2}+\omega_{o}^{2}}{s^{2}+s \frac{\omega_{o}}{Q}+\omega_{o}^{2}}
$$

Band-
reject filter symbol

- Phase response is given by:

$$
\angle A_{v}(j \omega)=\angle A_{o}+\angle\left(\omega_{o}^{2}-\omega^{2}\right)-\tan ^{-1}\left(\frac{1}{Q}\right)\left(\frac{\omega \omega_{o}}{\omega_{o}^{2}-\omega^{2}}\right)
$$

All-pass Function

- Uniform magnitude response at all frequencies.
- Can be used to tailor phase characteristics of a signal
- Transfer function is given by:

$$
A_{v}(S)=A_{o} \frac{s-\omega_{o}}{S+\omega_{o}}
$$

- For positive A_{0},

$$
\begin{aligned}
& \left|A_{v}(j \omega)\right|=A_{o} \\
& \angle A_{v}(j \omega)=-2 \tan ^{-1}\left(\frac{\omega}{\omega_{o}}\right)
\end{aligned}
$$

Op Amp Building Blocks: Integrator

${ }_{\text {(a) }} \overline{\overline{v_{o}}}(t)=v_{o}(o)-\frac{1}{R c} \int_{o}^{t} v_{i}(\tau) d \tau$

(b)

- Feedback resistor R_{2} in the inverting amplifier is replaced by capacitor C.
- The circuit uses frequency -dependent feedback.
$i_{i}=\frac{v_{i}}{R} \quad i_{C}=-C \frac{d v_{O}}{d t}$
Cal

Since $i_{C}=i_{i}$
$\int d v_{o}=\int-\frac{1}{R C} v_{i}(\tau) d \tau$
$\therefore v_{o}(t)=-\frac{1}{R C} \int v_{i}(\tau) d \tau+v_{o}(0)$
$v_{o}(0)=V_{C}(0)$

- Output voltage is proportional to the integral of the input

Op Amp Building Blocks: Differentiator

- Input resistor R_{1} in the inverting amplifier is replaced by capacitor C.
- Derivative operation emphasizes high-frequency components of input signal, hence is less often used than the integrator.
$i_{R}=-\frac{v_{O}}{R} \quad i_{i}=C \frac{d v_{i}}{d t}$

Since $i_{R}=i_{i}: \quad v_{O}=R C \frac{d v_{i}}{d t}$
Output is proportional to the derivative of input voltage.

